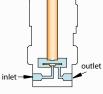
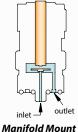
EVP SERIES MOUSE VALVES

2-WAY PROPORTIONAL VALVES

- · Flow proportional to input current
- Fast response and long life
- Small, compact design
- · Single moving part for low friction and wear
- Five orifice sizes
- Three connection styles
- Two mounting types

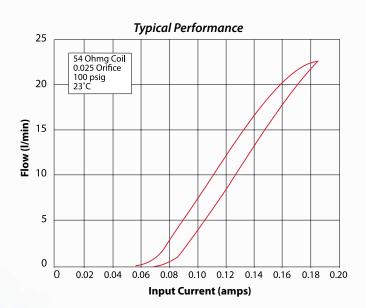
OPERATING PRESSURE


The EVP proportional valve can be calibrated for pressures less than the maximum pressure shown. Lower pressures may be substituted in increments of 5 psig, and will be used for calibration. For pressures less than 5 psig, call 877-245-6247.


Note: Voltage, orifice, and pressure are determined by the part number (see p. 56).

APPLICATIONS

- Analytical Instruments
- Blood pressure monitoring
- Precise pressure control
- Patient simulators

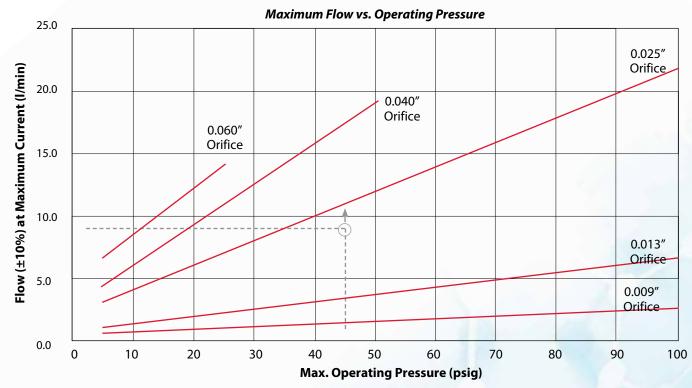


- Gas controllers
- Mass flow control
- Gas chromatography
- Respirators/ventilators

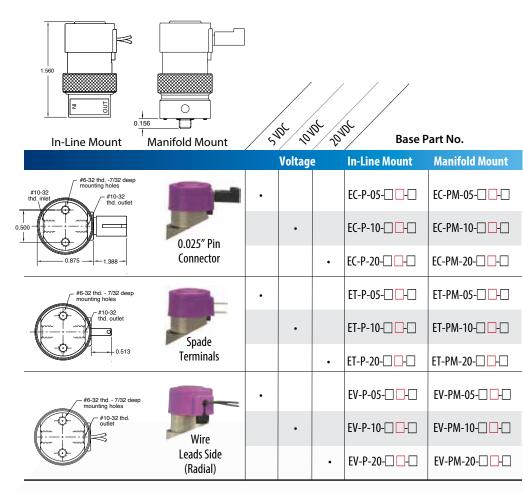
The EVP series proportional control valves combine the features of the existing EV series valve—long life, low power, and Clippard's reputation for high quality components-with the additional capability for proportional control. The EVP series valve provides air or gas flow control and varies the output flow based on the current input to the solenoid.


Controllability and overall value are the main features of the EVP proportional valve series. The consistent gain (see chart) of this valve provides a high degree of control for many applications. The valve may be controlled using DC current, open or closed-loop control, and even PWM (pulse width modulation) to cover a broad range of applications.

Max. Hysteresis	10% of full current	
Seal Material	Nitrile standard FKM, EPDM, and others available	
Ports	#10-32 Female (in-line) #10-32 Male stud (manifold) <i>See p. 20 for manifold options</i>	
Temp. Range	32 to 120°F	
Power Consumption	1.9 watts @ 73°F 2.3 watts max.	
Medium	Clean, dry air or inert gases	



EVP Series Proportional Mouse Valves


0.009", 0.013", 0.025", 0.040" and 0.060"

To determine the correct orifice required, locate the colored line immediately above the flow/pressure intersection Example: 9 slpm required at 45 psig inlet. This example leads to a "-2545" valve (0.025" nozzle, 45 psig).

EVP SERIES MOUSE VALVES

2-WAY PROPORTIONAL VALVES, IN-LINE & MANIFOLD MOUNT

Operating Range & Orifice

When selecting your valve, there are many variables to choose from.

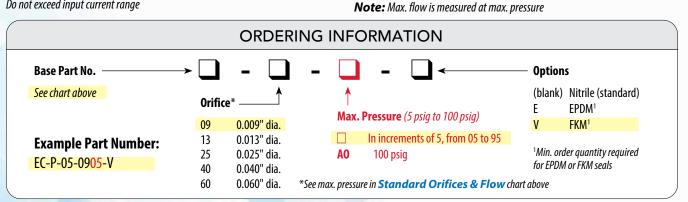
To choose the best valve for your application, focus on:

- **1.** The control signal
- **2.** Valve orifice
- 3. Operating pressure

Consult factory to discuss availability of non-standard voltages and other customization options.

Although the valves are listed by voltage, their flow is proportional to the current. It is crucial to specify and use a valve set to your operating pressure to assure to optimal performance for your exact requirements. Proportional flow is achieved by varying the current input to the valve.

The EVP valve can be calibrated for pressures less than the maximum shown. Lower pressures may be substituted in increments of 5 psig, and will be used for calibration. The pressures shown are standard options. For pressures less than 5 psig or greater than the maximum pressure listed, please consult Clippard.


CONTROL SIGNAL

Nominal	Input	Coil	Max. Voltage
Voltage Range	Current Range	Resistance	Required
@ 72°F (VDC)	(amps)	@ 72°F (ohms)	(VDC)
0 to 5	0 to 0.370	13.5	6.2
0 to 10	0 to 0.185	54	12.4
0 to 20	0 to 0.092	218	24.8

STANDARD ORIFICES & FLOW

Orifice	Max. Flow (I/min)	Part No. Code	Max. Pressure
0.009″	2.7 ±10%	09	100 psig
0.013″	6.7 ±10%	13	100 psig
0.025″	22.0 ±10%	25	100 psig
0.040″	18.7 ±10%	40	50 psig
0.060″	14.0 ±10%	60	25 psig

EVP SERIES MOUSE VALVE DRIVER

PROPORTIONAL VALVE DRIVER

- Plug-and-play interface between Clippard's EVP and DVP series valves and PLCs or other controls
- Linearized valve response right "out of the box"
- Three selectable valve output ranges
- Five signal inputs to choose from
- · Easy integration with existing machine controls
- User-adjustable parameters
- Automatic temperature compensation to maintain constant current
- Two configuration options: Stand-alone PCB or enclosed in housing
- Compact size

Power Requirements

Power input requirements are specified as supply voltage ranges for each EVP or DVP valve. Supplying voltages outside of these ranges may result in valve malfunctioning. Power requirements are determined by the valve voltage specification.

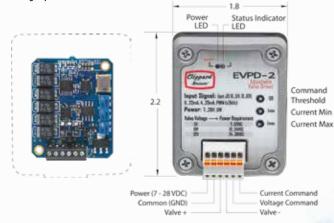
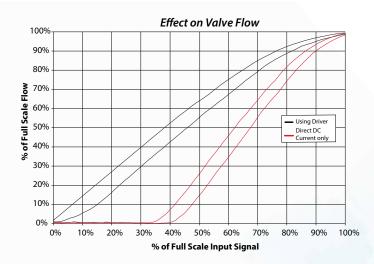



Figure 1: Effect of Driver Output on EVP or DVP Flow

The EVPD Proportional Valve Driver fast-tracks valve control applications. This product is ideal for laboratories and OEM product development, and can be customized to fit OEM applications including control parameters. The EVPD produces driver current for Clippard's EVP or DVP series valves proportional to input control signals.

Power Requirement	7 to 28 VDC @ 5 watt	
Input Impedance	200 kΩ	
Command Set-Point Signal Type	Selectable: 0 to 5 VDC, 0 to 10 VDC, 0 to 20 mA, 4 to 20 mA, PWM @ \geq 2 kHz duty cycle	
Adjustments	Min. drive current, max. drive current, command deadband	
LED Indicators	Power, activity status, and faults	
Output	0 to 0.4 (selectable range)	
Temperature Range	0 to 155° F	
Size	Open card: 1.5" x 1.3" x 0.4" unmounted Enclosed: 2.2" x 1.8" x 0.7' excluding DIN clip	
More Details	clippard.com/link/evpd	

nput Voltage Range	EVPD Max. Output*
7 to 12 VDC	400 mA
12 to 28 VDC	200 mA
14 to 28 VDC	100 mA
	7 to 12 VDC 12 to 28 VDC

*See EVP/DVP valve current requirements

Part No.	Description	
EVPD-2	EVPD Driver Assembly in Enclosure	•
EVPD-1	EVPD Driver Board	2 2
EVPD-2DIN	DIN Rail Mounting Clip	
	(shown at right) with screws	